電子鼻主要由氣味取樣操作器、氣體傳感器陣列和信號處理系統三種功能器件組成。電子鼻識別氣味的主要機理是在陣列中的每個傳感器對被測氣體都有不同的靈敏度,例如,一號氣體可在某個傳感器上產生高響應,而對其他傳感器則是低響應,同樣,二號氣體產生高響應的傳感器對一號氣體則不敏感,歸根結底,整個傳感器陣列對不同氣體的響應圖案是不同的,正是這種區別,才使系統能根據傳感器的響應圖案來識別氣味。
電子鼻的類型很多,其典型的工作程式是:首先,利用真空泵把空氣取樣吸取至裝有電子傳感器陣列的小容器室中。接著,取樣操作單元把已初始化的傳感器陣列暴露到氣味體中,當揮發性化合物(VOC)與傳感器活性材料表面相接觸時,就產生瞬時響應。
這種響應被記錄并傳送到信號處理單元進行分析,與數據庫中存儲的大量VOC圖案進行比較、鑒別,以確定氣味類型。
最后,要用酒精蒸氣“沖洗”傳感器活性材料表面以去除測畢的氣味混合物。在進入下一輪新的測量之前,傳感器仍要再次實行初始化(即工作之間,每個傳感器都需用干燥氣或某些其它參考氣體進行清洗,以達到基準狀態)。
被測氣味作用的時間稱為傳感器陣列的“響應時間”,清除過程和參考氣體作用的初始化過程所花的時間稱為“恢復時間”。
在電子鼻系統中,氣體傳感器陣列是關鍵因素。除基本的氣相色譜(GC)分析法以外,電子鼻傳感器的主要類型還有導電型傳感器、壓電類傳感器、場效應傳感器、光纖傳感器等。
導電性傳感器的基本特點是,其置于揮發性化合物(VOC)時的響應形式是電阻值發生變化。導電性傳感器又分為金屬氧化物傳感器和聚合物傳感器兩大類。金屬氧化物傳感器在電子鼻系統中應用更廣泛,其結構如圖1所示。此類傳感器中與VOC相接觸的活性材料是錫、鋅、鈦、鎢或銥的氧化物,襯底材料一般是硅、玻璃、塑料,發生接觸反應需滿足200~400℃的溫度條件,因此在底部設置了加熱器。氧化物材料中用鉑、鈀等貴重金屬攙雜形成兩條金屬接觸電極。與VOC的相互作用改變了活性材料的導電性,使兩電極之間的電阻發生變化,這種電阻變化可用單臂電橋或其它電路來測量。事實上,一個傳感器的活性材料總是設計得對某些特定氣味響應最靈敏。
該傳感器的靈敏度范圍為5~50ppm。金屬氧化物傳感器的缺點是:
(1)工作溫度較高;
(2)經長時間工作之后,響應基準值易發生漂移,需要利用信號處理運算來克服;
(3)對氣體混合物中出現的硫化物呈“中毒”反應。
但是,它有很寬的適用范圍和相對低的成本,故依然成為當今廣泛應用的氣體傳感器。